Splitting, bounding and almost disjointness number

Diego A. Mejía joint work with Vera Fischer

Technische Universität Wien

Winter School February 2nd, 2015

• For $f, g \in \omega^{\omega}$, f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.

- For $f, g \in \omega^{\omega}$, f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- The (un)bounding number b is the least size of a ≤*-unbounded family of ω^ω.

- For $f, g \in \omega^{\omega}$, f is dominated by g, denoted by $f \leq^* g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- The (un)bounding number b is the least size of a ≤*-unbounded family of ω^ω.
- The *dominating number* ∂ is the least size of a ≤*-cofinal family.

• For $X, A \in [\omega]^{\omega}$, X splits A iff $X \cap A$ and $A \setminus X$ are infinite.

• For $X, A \in [\omega]^{\omega}$, X splits A iff $X \cap A$ and $A \setminus X$ are infinite.

The splitting number s is the least size of a splitting family, that is, a subset *F* of [ω]^ω such that any member of [ω]^ω is splitted by some member of *F*.

• For $X, A \in [\omega]^{\omega}$, X splits A iff $X \cap A$ and $A \setminus X$ are infinite.

- The splitting number s is the least size of a splitting family, that is, a subset *F* of [ω]^ω such that any member of [ω]^ω is splitted by some member of *F*.
- A ⊆ [ω]^ω is an a.d. (almost disjoint) family if any two distinct members of A have finite intersection.

• For $X, A \in [\omega]^{\omega}$, X splits A iff $X \cap A$ and $A \setminus X$ are infinite.

- The splitting number s is the least size of a splitting family, that is, a subset *F* of [ω]^ω such that any member of [ω]^ω is splitted by some member of *F*.
- A ⊆ [ω]^ω is an a.d. (almost disjoint) family if any two distinct members of A have finite intersection.
- the *almost disjointness number* a is the minimal size of an infinite mad (maximal a.d.) family.

Folklore

E.g. finite support iteration of Hechler forcing \mathbb{D} of length μ (uncountable regular) forces $\mathfrak{s} = \aleph_1 < \mathfrak{b} = \mathfrak{d} = \mu$.

E.g. finite support iteration of Hechler forcing \mathbb{D} of length μ (uncountable regular) forces $\mathfrak{s} = \aleph_1 < \mathfrak{b} = \mathfrak{d} = \mu$.

Additionally, if $\theta < \mu$ is uncountable regular, if we alternate \mathbb{D} with Mathias-Prikry posets of size $< \theta$ (i.e., \mathbb{M}_F with F a filter base of size $< \theta$) by a book-keeping devise, the resulting iteration forces $\mathfrak{s} = \theta < \mathfrak{b} = \mu$.

Theorem (Shelah 2004)

If $\aleph_1 < \mu < \lambda$ are uncountable regular cardinals, then it is consistent that $\mathfrak{s} = \aleph_1 < \mathfrak{b} = \mathfrak{d} = \mu < \mathfrak{a} = \mathfrak{c} = \lambda$.

Theorem (Shelah 2004)

If $\aleph_1 < \mu < \lambda$ are uncountable regular cardinals, then it is consistent that $\mathfrak{s} = \aleph_1 < \mathfrak{b} = \mathfrak{d} = \mu < \mathfrak{a} = \mathfrak{c} = \lambda$.

Problem

- (1) Is $\mathfrak{b} < \mathfrak{a} < \mathfrak{s}$ consistent?
- (2) Is $\mathfrak{b} < \mathfrak{s} < \mathfrak{a}$ consistent?

Theorem (Shelah 2004)

If $\aleph_1 < \mu < \lambda$ are uncountable regular cardinals, then it is consistent that $\mathfrak{s} = \aleph_1 < \mathfrak{b} = \mathfrak{d} = \mu < \mathfrak{a} = \mathfrak{c} = \lambda$.

Problem

- (1) Is $\mathfrak{b} < \mathfrak{a} < \mathfrak{s}$ consistent?
- (2) Is $\mathfrak{b} < \mathfrak{s} < \mathfrak{a}$ consistent?
- (3) Is $\aleph_1 < \mathfrak{s} < \mathfrak{b} < \mathfrak{a}$ consistent?

Definition (Indexed template)

An indexed template is a pair $\langle L, \overline{\mathcal{I}} := \langle \mathcal{I}_x \rangle_{x \in L} \rangle$ such that L is a linear order, $\mathcal{I}_x \subseteq \wp(L_x)$ for all $x \in L$ and

Definition (Indexed template)

An indexed template is a pair $\langle L, \overline{\mathcal{I}} := \langle \mathcal{I}_x \rangle_{x \in L} \rangle$ such that L is a linear order, $\mathcal{I}_x \subseteq \wp(L_x)$ for all $x \in L$ and (1) $\varnothing \in \mathcal{I}_x$,

Definition (Indexed template)

An *indexed template* is a pair $\langle L, \overline{\mathcal{I}} := \langle \mathcal{I}_x \rangle_{x \in L} \rangle$ such that L is a linear order, $\mathcal{I}_x \subseteq \wp(L_x)$ for all $x \in L$ and

(1)
$$\emptyset \in \mathcal{I}_x$$
,

(2) \mathcal{I}_{x} is closed under finite unions and intersections,

Definition (Indexed template)

An *indexed template* is a pair $\langle L, \overline{\mathcal{I}} := \langle \mathcal{I}_x \rangle_{x \in L} \rangle$ such that L is a linear order, $\mathcal{I}_x \subseteq \wp(L_x)$ for all $x \in L$ and

(1) $\emptyset \in \mathcal{I}_x$,

(2) \mathcal{I}_x is closed under finite unions and intersections,

(3) $\mathcal{I}_x \subseteq \mathcal{I}_y$ if x < y and

Definition (Indexed template)

An *indexed template* is a pair $\langle L, \overline{\mathcal{I}} := \langle \mathcal{I}_x \rangle_{x \in L} \rangle$ such that L is a linear order, $\mathcal{I}_x \subseteq \wp(L_x)$ for all $x \in L$ and

- (1) $\emptyset \in \mathcal{I}_x$,
- (2) \mathcal{I}_x is closed under finite unions and intersections,
- (3) $\mathcal{I}_x \subseteq \mathcal{I}_y$ if x < y and
- (4) $\mathcal{I}(L) := \bigcup_{x \in L} \mathcal{I}_x \cup \{L\}$ is well-founded by the subset relation.

Definition (Indexed template)

An *indexed template* is a pair $\langle L, \overline{\mathcal{I}} := \langle \mathcal{I}_x \rangle_{x \in L} \rangle$ such that L is a linear order, $\mathcal{I}_x \subseteq \wp(L_x)$ for all $x \in L$ and

- (1) $\emptyset \in \mathcal{I}_x$,
- (2) \mathcal{I}_x is closed under finite unions and intersections,
- (3) $\mathcal{I}_x \subseteq \mathcal{I}_y$ if x < y and
- (4) $\mathcal{I}(L) := \bigcup_{x \in L} \mathcal{I}_x \cup \{L\}$ is well-founded by the subset relation.

For $x \in L$, $\hat{\mathcal{I}}_x$ denotes the ideal (on L_x) generated by \mathcal{I}_x .

The well foundedness allows to define a function $\mathrm{Dp} = \mathrm{Dp}^{\bar{\mathcal{I}}} : \wp(\mathcal{L}) \to \mathbf{ON}$ such that, for $X \subseteq Y \subseteq \mathcal{L}$,

• $Dp(X) \leq Dp(Y)$ and

- $Dp(X) \leq Dp(Y)$ and
- Dp(X) < Dp(Y) whenever $x \in Y$ and $X \in \mathcal{I}_x \upharpoonright Y = \{A \cap Y \mid A \in \mathcal{I}_x\}.$

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- Dp(X) < Dp(Y) whenever $x \in Y$ and $X \in \mathcal{I}_x \upharpoonright Y = \{A \cap Y \mid A \in \mathcal{I}_x\}$. In addition, if $X \subsetneq Y \cap L_x$, then $Dp(X \cup \{x\}) < Dp(Y)$.

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- Dp(X) < Dp(Y) whenever $x \in Y$ and $X \in \mathcal{I}_x | Y = \{A \cap Y \mid A \in \mathcal{I}_x\}$. In addition, if $X \subsetneq Y \cap L_x$, then $Dp(X \cup \{x\}) < Dp(Y)$.

For example:

•
$$\mathcal{I}_x = [L_x]^{<\omega}$$
.

- $Dp(X) \leq Dp(Y)$ and
- Dp(X) < Dp(Y) whenever $x \in Y$ and $X \in \mathcal{I}_x | Y = \{A \cap Y \mid A \in \mathcal{I}_x\}$. In addition, if $X \subsetneq Y \cap L_x$, then $Dp(X \cup \{x\}) < Dp(Y)$.

For example:

•
$$\mathcal{I}_x = [\mathcal{L}_x]^{<\omega}$$
. Here, $\hat{\mathcal{I}}_x = \mathcal{I}_x$ and $Dp(X) = \min\{|X|, \omega\}$.

- $Dp(X) \leq Dp(Y)$ and
- Dp(X) < Dp(Y) whenever $x \in Y$ and $X \in \mathcal{I}_x | Y = \{A \cap Y \mid A \in \mathcal{I}_x\}$. In addition, if $X \subsetneq Y \cap L_x$, then $Dp(X \cup \{x\}) < Dp(Y)$.

For example:

•
$$\mathcal{I}_x = [\mathcal{L}_x]^{<\omega}$$
. Here, $\hat{\mathcal{I}}_x = \mathcal{I}_x$ and $Dp(X) = \min\{|X|, \omega\}$.

• $L = \delta$ ordinal, $\mathcal{I}_{\alpha} = \alpha + 1$.

- $Dp(X) \leq Dp(Y)$ and
- Dp(X) < Dp(Y) whenever $x \in Y$ and $X \in \mathcal{I}_x | Y = \{A \cap Y \mid A \in \mathcal{I}_x\}$. In addition, if $X \subsetneq Y \cap L_x$, then $Dp(X \cup \{x\}) < Dp(Y)$.

For example:

•
$$\mathcal{I}_x = [\mathcal{L}_x]^{<\omega}$$
. Here, $\hat{\mathcal{I}}_x = \mathcal{I}_x$ and $Dp(X) = \min\{|X|, \omega\}$.

• $L = \delta$ ordinal, $\mathcal{I}_{\alpha} = \alpha + 1$. Here, $\hat{\mathcal{I}}_{\alpha} = \mathcal{P}(\alpha)$ and Dp(X) = o.t.(X).

- $Dp(X) \leq Dp(Y)$ and
- Dp(X) < Dp(Y) whenever $x \in Y$ and $X \in \mathcal{I}_x | Y = \{A \cap Y \mid A \in \mathcal{I}_x\}$. In addition, if $X \subsetneq Y \cap L_x$, then $Dp(X \cup \{x\}) < Dp(Y)$.

For example:

•
$$\mathcal{I}_x = [L_x]^{<\omega}$$
. Here, $\hat{\mathcal{I}}_x = \mathcal{I}_x$ and $Dp(X) = \min\{|X|, \omega\}$.

• $L = \delta$ ordinal, $\mathcal{I}_{\alpha} = \alpha + 1$. Here, $\hat{\mathcal{I}}_{\alpha} = \mathcal{P}(\alpha)$ and Dp(X) = o.t.(X). This is the template corresponding to a fsi of length δ .

• $\mathbb{P} \upharpoonright B$ is defined for any $B \subseteq L$.

- $\mathbb{P} \upharpoonright B$ is defined for any $B \subseteq L$.
- If $A \subseteq B \subseteq L$ then $\mathbb{P} \upharpoonright A \lessdot \mathbb{P} \upharpoonright B$.

- $\mathbb{P} \upharpoonright B$ is defined for any $B \subseteq L$.
- If $A \subseteq B \subseteq L$ then $\mathbb{P} \upharpoonright A \lessdot \mathbb{P} \upharpoonright B$.
- For $x \in L$, the generic object added at x is generic over $V^{\mathbb{P} \restriction B}$ for all $B \in \hat{\mathcal{I}}_x$,

- $\mathbb{P} \upharpoonright B$ is defined for any $B \subseteq L$.
- If $A \subseteq B \subseteq L$ then $\mathbb{P} \upharpoonright A \lessdot \mathbb{P} \upharpoonright B$.
- For $x \in L$, the generic object added at x is generic over $V^{\mathbb{P} \upharpoonright B}$ for all $B \in \hat{\mathcal{I}}_x$, that is, $\mathbb{P} \upharpoonright (B \cup \{x\}) = \mathbb{P} \upharpoonright B * \dot{\mathbb{Q}}_x^B$.

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}} \rangle$, H, M disjoint sets, $L = H \cup M$ and $C_x \in \hat{\mathcal{I}}_x$ of size $< \theta$ for $x \in M$.

(i) If A has a maximum x and $A_x = A \cap L_x \in \hat{\mathcal{I}}_x$ then $\mathbb{P} \upharpoonright A = \mathbb{P} \upharpoonright A_x * \dot{\mathbb{Q}}_x^{A_x}$ where:

(i) If A has a maximum x and $A_x = A \cap L_x \in \hat{\mathcal{I}}_x$ then $\mathbb{P} \upharpoonright A = \mathbb{P} \upharpoonright A_x * \dot{\mathbb{Q}}_x^{A_x}$ where:

• If
$$x \in H$$
 then $\dot{\mathbb{Q}}_x^{A_x} = \mathbb{D}^{V^{\mathbb{P} \upharpoonright A_x}}$

(i) If A has a maximum x and $A_x = A \cap L_x \in \hat{\mathcal{I}}_x$ then $\mathbb{P} \upharpoonright A = \mathbb{P} \upharpoonright A_x * \dot{\mathbb{Q}}_x^{A_x}$ where:

• If
$$x \in H$$
 then $\dot{\mathbb{Q}}_x^{A_x} = \mathbb{D}^{V^{\mathbb{P} \upharpoonright A_x}}$

• If $x \in M$ and $C_x \subseteq A_x$, fix \dot{F}_x is a $\mathbb{P} \upharpoonright C_x$ -name of a filter base of size $< \theta$ (this only depends on C_x) and put $\dot{\mathbb{Q}}_x^{A_x} = \mathbb{M}_{\dot{F}_x}$.

(i) If A has a maximum x and $A_x = A \cap L_x \in \hat{\mathcal{I}}_x$ then $\mathbb{P} \upharpoonright A = \mathbb{P} \upharpoonright A_x * \dot{\mathbb{Q}}_x^{A_x}$ where:

• If
$$x \in H$$
 then $\dot{\mathbb{Q}}_x^{\mathcal{A}_x} = \mathbb{D}^{V^{\mathbb{P} \upharpoonright \mathcal{A}_x}}$

If x ∈ M and C_x ⊆ A_x, fix F_x is a P↾C_x-name of a filter base of size
 θ (this only depends on C_x) and put Q^{A_x} = M_{F_x}.

• If
$$x \in M$$
 but $C_x \nsubseteq A_x$, then $\dot{\mathbb{Q}}_x^{\mathcal{A}_x} = \mathbb{1}$.

(i) If A has a maximum x and $A_x = A \cap L_x \in \hat{\mathcal{I}}_x$ then $\mathbb{P} \upharpoonright A = \mathbb{P} \upharpoonright A_x * \dot{\mathbb{Q}}_x^{A_x}$ where:

• If
$$x \in H$$
 then $\dot{\mathbb{Q}}_x^{A_x} = \mathbb{D}^{V^{\mathbb{P} \upharpoonright A_x}}$

If x ∈ M and C_x ⊆ A_x, fix F_x is a P↾C_x-name of a filter base of size
 θ (this only depends on C_x) and put Q^{A_x} = M_{F_x}.

• If
$$x \in M$$
 but $\mathcal{C}_x \nsubseteq \mathcal{A}_x$, then $\dot{\mathbb{Q}}_x^{\mathcal{A}_x} = \mathbb{1}$

(ii) If A has a maximum x but $A_x \notin \hat{\mathcal{I}}_x$, then $\mathbb{P} \upharpoonright A = \operatorname{limdir} \{\mathbb{P} \upharpoonright B / B \subseteq A \text{ and } B \cap L_x \in \mathcal{I}_x \upharpoonright A \}.$

(i) If A has a maximum x and $A_x = A \cap L_x \in \hat{\mathcal{I}}_x$ then $\mathbb{P} \upharpoonright A = \mathbb{P} \upharpoonright A_x * \dot{\mathbb{Q}}_x^{A_x}$ where:

• If
$$x \in H$$
 then $\dot{\mathbb{Q}}_x^{A_x} = \mathbb{D}^{V^{\mathbb{P} \upharpoonright A_x}}$

If x ∈ M and C_x ⊆ A_x, fix F_x is a P↾C_x-name of a filter base of size
 θ (this only depends on C_x) and put Q^{A_x} = M_{F_x}.

• If
$$x\in M$$
 but $\mathcal{C}_{x}
ot\subseteq \mathcal{A}_{x}$, then $\dot{\mathbb{Q}}_{x}^{\mathcal{A}_{x}}=\mathbb{1}$

(ii) If A has a maximum x but
$$A_x \notin \hat{\mathcal{I}}_x$$
, then
 $\mathbb{P} \upharpoonright A = \operatorname{limdir} \{\mathbb{P} \upharpoonright B / B \subseteq A \text{ and } B \cap L_x \in \mathcal{I}_x \upharpoonright A \}.$

(iii) If A does not have a maximum, then $\mathbb{P}[A = \operatorname{limdir}{\mathbb{P}[B \mid \exists_{x \in A}(B \in \mathcal{I}[A)]} \text{ (so } \mathbb{P}[\emptyset = 1]).$

Lemma

For any $A \subseteq L$, (a) $\mathbb{P} \upharpoonright A$ is ccc (moreover, Knaster) and

Lemma

For any $A \subseteq L$,

(a) $\mathbb{P} \upharpoonright A$ is ccc (moreover, Knaster) and

(b) if $p \in \mathbb{P} \upharpoonright A$ and \dot{x} is a $\mathbb{P} \upharpoonright A$ -name for a real, then there is $C \subseteq A$ of size $< \theta$ such that $p \in \mathbb{P} \upharpoonright C$ and \dot{x} is a $\mathbb{P} \upharpoonright C$ -name.

Theorem (M.)

Let $\theta < \kappa < \mu < \lambda$ be uncountable regular cardinals where κ is measurable, $\theta^{<\theta} = \theta$ and $\lambda^{\kappa} = \lambda$. Then, there exists a ccc poset forcing $\mathfrak{s} = \theta < \mathfrak{b} = \mathfrak{d} = \mu < \mathfrak{a} = \mathfrak{c} = \lambda$.

Theorem (M.)

Let $\theta < \kappa < \mu < \lambda$ be uncountable regular cardinals where κ is measurable, $\theta^{<\theta} = \theta$ and $\lambda^{\kappa} = \lambda$. Then, there exists a ccc poset forcing $\mathfrak{s} = \theta < \mathfrak{b} = \mathfrak{d} = \mu < \mathfrak{a} = \mathfrak{c} = \lambda$.

Problem

Can a similar consistency result be proven with ZFC alone?

$$L^{\delta} = (\lambda \mu) \times \bigcup_{n < \omega} (\delta^*, \delta)^n$$

$$L^{\delta} = (\lambda \mu) imes \bigcup_{n < \omega} (\delta^*, \delta)^n$$

linearly ordered by x < y iff one of the following holds:

- (i) there is some $k < \min\{|x|, |y|\}$ such that $x \upharpoonright k = y \upharpoonright k$ and x(k) < y(k);
- (ii) $x \subseteq y$ and y(|x|) is positive.
- (iii) $y \subseteq x$ and x(|y|) is negative.

$$L^{\delta} = (\lambda \mu) imes \bigcup_{n < \omega} (\delta^*, \delta)^n$$

linearly ordered by x < y iff one of the following holds:

- (i) there is some $k < \min\{|x|, |y|\}$ such that $x \upharpoonright k = y \upharpoonright k$ and x(k) < y(k);
- (ii) $x \subseteq y$ and y(|x|) is positive.
- (iii) $y \subseteq x$ and x(|y|) is negative.

The family \mathcal{I}^{δ} if formed by finite unions of sets from

 $\{L_{\alpha}^{\delta} \ / \ \alpha \in \lambda \mu\} \cup \{[x \upharpoonright (|x|-1), x) \ / \ x \in L^{\delta} \text{ is } \theta \text{-relevant}\} \cup \{\{z\} \ / \ z \in L^{\delta}\}.$

$$L^{\delta} = (\lambda \mu) imes \bigcup_{n < \omega} (\delta^*, \delta)^n$$

linearly ordered by x < y iff one of the following holds:

- (i) there is some $k < \min\{|x|, |y|\}$ such that $x \upharpoonright k = y \upharpoonright k$ and x(k) < y(k);
- (ii) $x \subseteq y$ and y(|x|) is positive.
- (iii) $y \subseteq x$ and x(|y|) is negative.

The family \mathcal{I}^{δ} if formed by finite unions of sets from

 $\{L_{\alpha}^{\delta} \ / \ \alpha \in \lambda \mu\} \cup \{[x \upharpoonright (|x|-1), x) \ / \ x \in L^{\delta} \text{ is } \theta \text{-relevant}\} \cup \{\{z\} \ / \ z \in L^{\delta}\}.$

 $\langle L^{\delta}, \bar{\mathcal{I}}^{\delta} \rangle \text{ is an indexed template, where } \mathcal{I}_x^{\delta} := \{A \in \mathcal{I}^{\delta} \ / \ A \subseteq L_x^{\delta} \}.$

• To force $\mathfrak{a} \geq \lambda$, assume $\{\dot{a}_{\epsilon} / \epsilon < \kappa\}$ is a sequence of names with $\aleph_1 < \kappa < \lambda$ that is forced to form an a.d. family.

• To force $\mathfrak{a} \geq \lambda$, assume $\{\dot{a}_{\epsilon} / \epsilon < \kappa\}$ is a sequence of names with $\aleph_1 < \kappa < \lambda$ that is forced to form an a.d. family. For each $\epsilon < \kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$ -name.

- To force $\mathfrak{a} \geq \lambda$, assume $\{\dot{a}_{\epsilon} / \epsilon < \kappa\}$ is a sequence of names with $\aleph_1 < \kappa < \lambda$ that is forced to form an a.d. family. For each $\epsilon < \kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$ -name.
- **2** By a Δ -system argument, wlog assume that $\{B_{\alpha} / \alpha < \omega_1\}$ forms a Δ -system with root R, $\langle B_{\alpha}, \overline{\mathcal{I}}^{\lambda} | B_{\alpha} \rangle \cong \langle B_0, \overline{\mathcal{I}}^{\lambda} | B_0 \rangle$ and $\langle \mathbb{P} | B_{\alpha}, \dot{a}_{\alpha} \rangle \cong \langle \mathbb{P} | B_0, \dot{a}_0 \rangle$ for all $\alpha < \omega_1$.

- To force $\mathfrak{a} \geq \lambda$, assume $\{\dot{a}_{\epsilon} / \epsilon < \kappa\}$ is a sequence of names with $\aleph_1 < \kappa < \lambda$ that is forced to form an a.d. family. For each $\epsilon < \kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$ -name.
- **2** By a Δ -system argument, wlog assume that $\{B_{\alpha} / \alpha < \omega_1\}$ forms a Δ -system with root R, $\langle B_{\alpha}, \overline{\mathcal{I}}^{\lambda} \upharpoonright B_{\alpha} \rangle \cong \langle B_0, \overline{\mathcal{I}}^{\lambda} \upharpoonright B_0 \rangle$ and $\langle \mathbb{P} \upharpoonright B_{\alpha}, \dot{a}_{\alpha} \rangle \cong \langle \mathbb{P} \upharpoonright B_0, \dot{a}_0 \rangle$ for all $\alpha < \omega_1$.
- Construct $B_{\kappa} \subseteq L^{\lambda}$ countable s.t. $B_{\kappa} \cap B_{\alpha} = R$ for all $\alpha < \omega_1$ and $\langle \mathbb{P} \upharpoonright B_0, \dot{a}_0 \rangle \simeq \langle \mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa} \rangle$.

- To force $\mathfrak{a} \geq \lambda$, assume $\{\dot{a}_{\epsilon} / \epsilon < \kappa\}$ is a sequence of names with $\aleph_1 < \kappa < \lambda$ that is forced to form an a.d. family. For each $\epsilon < \kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$ -name.
- **2** By a Δ -system argument, wlog assume that $\{B_{\alpha} / \alpha < \omega_1\}$ forms a Δ -system with root R, $\langle B_{\alpha}, \overline{\mathcal{I}}^{\lambda} \upharpoonright B_{\alpha} \rangle \cong \langle B_0, \overline{\mathcal{I}}^{\lambda} \upharpoonright B_0 \rangle$ and $\langle \mathbb{P} \upharpoonright B_{\alpha}, \dot{a}_{\alpha} \rangle \cong \langle \mathbb{P} \upharpoonright B_0, \dot{a}_0 \rangle$ for all $\alpha < \omega_1$.
- Construct $B_{\kappa} \subseteq L^{\lambda}$ countable s.t. $B_{\kappa} \cap B_{\alpha} = R$ for all $\alpha < \omega_1$ and $\langle \mathbb{P} \upharpoonright B_0, \dot{a}_0 \rangle \simeq \langle \mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa} \rangle$.
- For $\epsilon < \kappa$ there is a suitable $\alpha < \omega_1$ such that $B_{\epsilon} \cap B_{\alpha} \subseteq R$ and $\langle \mathbb{P}|(B_{\alpha} \cup B_{\epsilon}), \dot{a}_{\alpha}, \dot{a}_{\epsilon} \rangle \simeq \langle \mathbb{P}|(B_{\kappa} \cup B_{\epsilon}), \dot{a}_{\kappa}, \dot{a}_{\epsilon} \rangle$,

- To force $\mathfrak{a} \geq \lambda$, assume $\{\dot{a}_{\epsilon} / \epsilon < \kappa\}$ is a sequence of names with $\aleph_1 < \kappa < \lambda$ that is forced to form an a.d. family. For each $\epsilon < \kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$ -name.
- **2** By a Δ -system argument, wlog assume that $\{B_{\alpha} / \alpha < \omega_1\}$ forms a Δ -system with root R, $\langle B_{\alpha}, \overline{\mathcal{I}}^{\lambda} \upharpoonright B_{\alpha} \rangle \cong \langle B_0, \overline{\mathcal{I}}^{\lambda} \upharpoonright B_0 \rangle$ and $\langle \mathbb{P} \upharpoonright B_{\alpha}, \dot{a}_{\alpha} \rangle \cong \langle \mathbb{P} \upharpoonright B_0, \dot{a}_0 \rangle$ for all $\alpha < \omega_1$.
- Construct $B_{\kappa} \subseteq L^{\lambda}$ countable s.t. $B_{\kappa} \cap B_{\alpha} = R$ for all $\alpha < \omega_1$ and $\langle \mathbb{P} \upharpoonright B_0, \dot{a}_0 \rangle \simeq \langle \mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa} \rangle$.
- For ε < κ there is a suitable α < ω₁ such that B_ε ∩ B_α ⊆ R and ⟨ℙ↾(B_α ∪ B_ε), à_α, à_ε⟩ ≃ ⟨ℙ↾(B_κ ∪ B_ε), à_κ, à_ε⟩, so à_κ and à_α are forced to be pairwise disjoint.

What happens for arbitrary θ ?

What happens for arbitrary θ ? Assuming $\theta^{<\theta} = \theta$ and $\lambda^{<\theta} = \lambda$, by changing ω_1 by θ and "countable" by "size $< \theta$ ", we can repeat steps 1 and 2 of the previous argument,

Look at a $\delta < \lambda$: Assume such an iteration along L^{δ} and go through steps 1 and 2.

Look at a $\delta < \lambda$: Assume such an iteration along L^{δ} and go through steps 1 and 2. Now:

3' Find $\delta' \in (\delta, \lambda)$, choose a suitable $B_{\kappa} \subseteq L^{\delta'}$ such that $B_{\kappa} \cap L^{\delta} = R$ (the same intersected with all B_{α} with $\alpha < \theta$) and extend the iteration $\mathbb{P} \upharpoonright L^{\delta}$ to $\mathbb{P} \upharpoonright L^{\delta'}$ such that $\langle \mathbb{P} \upharpoonright B_0, \dot{a}_0 \rangle \simeq \langle \mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa} \rangle$.

Look at a $\delta < \lambda$: Assume such an iteration along L^{δ} and go through steps 1 and 2. Now:

- 3' Find $\delta' \in (\delta, \lambda)$, choose a suitable $B_{\kappa} \subseteq L^{\delta'}$ such that $B_{\kappa} \cap L^{\delta} = R$ (the same intersected with all B_{α} with $\alpha < \theta$) and extend the iteration $\mathbb{P} \upharpoonright L^{\delta}$ to $\mathbb{P} \upharpoonright L^{\delta'}$ such that $\langle \mathbb{P} \upharpoonright B_0, \dot{a}_0 \rangle \simeq \langle \mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa} \rangle$.
- 4' Same as step 4.

Assume $\theta^{<\theta} = \theta$ and $\lambda^{<\lambda} = \lambda$.

Assume
$$\theta^{<\theta} = \theta$$
 and $\lambda^{<\lambda} = \lambda$.

Main Lemma

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and \dot{A} a $\mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$.

Assume
$$\theta^{<\theta} = \theta$$
 and $\lambda^{<\lambda} = \lambda$.

Main Lemma

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $\dot{A} \ a \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$. Then, there is a $\delta < \delta' < \lambda$ and an iteration $\mathbb{P}^{\delta'}$ of the same type along $L^{\delta'}$ such that

Assume
$$\theta^{<\theta} = \theta$$
 and $\lambda^{<\lambda} = \lambda$.

Main Lemma

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $\dot{A} \in \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$. Then, there is a $\delta < \delta' < \lambda$ and an iteration $\mathbb{P}^{\delta'}$ of the same type along $L^{\delta'}$ such that

(a)
$$\mathbb{P}^{\delta} \upharpoonright X = \mathbb{P}^{\delta'} \upharpoonright X$$
 for all $X \subseteq L^{\delta}$,

Assume
$$\theta^{<\theta} = \theta$$
 and $\lambda^{<\lambda} = \lambda$.

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $\dot{A} \ a \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$. Then, there is a $\delta < \delta' < \lambda$ and an iteration $\mathbb{P}^{\delta'}$ of the same type along $L^{\delta'}$ such that

(a)
$$\mathbb{P}^{\delta} \upharpoonright X = \mathbb{P}^{\delta'} \upharpoonright X$$
 for all $X \subseteq L^{\delta}$,

(b) for any $\mathbb{P}^{\delta'} \upharpoonright L^{\delta'}$ -name \dot{F} for a filter base of size $< \theta$, there is an $x \in M^{\delta'}$ such that $\Vdash_{\delta'} \dot{F} = \dot{F}_x$ and

Assume
$$\theta^{<\theta} = \theta$$
 and $\lambda^{<\lambda} = \lambda$.

Let $\theta^+ < \delta < \lambda$, \mathbb{P}^{δ} be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $< \theta$ along L^{δ} and $\dot{A} \ a \mathbb{P} \upharpoonright L^{\delta}$ -name of an a.d. family of size $\kappa \in (\theta, \lambda)$. Then, there is a $\delta < \delta' < \lambda$ and an iteration $\mathbb{P}^{\delta'}$ of the same type along $L^{\delta'}$ such that

(a)
$$\mathbb{P}^{\delta} \upharpoonright X = \mathbb{P}^{\delta'} \upharpoonright X$$
 for all $X \subseteq L^{\delta}$,

(b) for any P^{δ'} |L^{δ'}-name F for a filter base of size < θ, there is an x ∈ M^{δ'} such that ||_{δ'} F = F_x and
(c) P^{δ'} |L^{δ'} forces that A is not mad.

Theorem (Fischer and M.)

There is an iteration \mathbb{P}^{λ} along L^{λ} that forces $\mathfrak{s} = \theta < \mathfrak{b} = \mathfrak{d} = \mu < \mathfrak{a} = \mathfrak{c} = \lambda$.

Theorem (Fischer and M.)

If $\theta_0 < \theta_1 < \theta < \mu < \lambda$ are uncountable regular, $\theta^{<\theta} = \theta$ and $\lambda^{<\lambda} = \lambda$, then there is a ccc poset that forces $\operatorname{add}(\mathcal{N}) = \theta_0 < \operatorname{cov}(\mathcal{N}) = \theta_1 < \mathfrak{p} = \mathfrak{g} = \mathfrak{g} = \theta < \operatorname{add}(\mathcal{M}) = \operatorname{cof}(\mathcal{M}) = \mu < \operatorname{non}(\mathcal{N}) = \mathfrak{a} = \mathfrak{r} = \mathfrak{c} = \lambda$.

