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e For X, A € [w]¥, X splits A iff X N A and A~ X are infinite.

X A

o The splitting number s is the least size of a splitting family, that is, a
subset F of [w]¥ such that any member of [w]¥ is splitted by some
member of F.

o AC [w]¥is an a.d. (almost disjoint) family if any two distinct
members of A have finite intersection.

@ the almost disjointness number a is the minimal size of an infinite
mad (maximal a.d.) family.
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E.g. finite support iteration of Hechler forcing D of length p (uncountable
regular) forces s =Ry < b =0 = p.

Additionally, if 8 < p is uncountable regular, if we alternate D with
Mathias-Prikry posets of size < 6 (i.e., Mg with F a filter base of size < 0)
by a book-keeping devise, the resulting iteration forces s = 0 < b = pu.
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We are interested in obtaining models where three or more cardinals of
this diagram are pairwise different.

Theorem (Shelah 2004)

If X1 < p < X are uncountable regular cardinals, then it is consistent that
s=N<b=0=pu<a=c=A\.

Problem

(1) Is b < a < s consistent?
(2) Is b < s < a consistent?
(3) Is Ry < s < b < a consistent?
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For a linear order L and x € L, let Ly, :={z e L / z < x}.

Definition (Indexed template)

An indexed template is a pair (L,Z := (Z,)xe1) such that L is a linear
order, Z,, C p(Ly) for all x € L and

(1) @ € I,

(2) Z is closed under finite unions and intersections,

(3) Z, CZ, if x < y and

(4) Z(L) := Uyer Zx U {L} is well-founded by the subset relation.
For x € L, Z, denotes the ideal (on Ly) generated by Z,.
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Templates

The well foundedness allows to define a function Dp = Dp~ : o(L) — ON
such that, for X C Y C L,

e Dp(X) < Dp(Y) and
e Dp(X) < Dp(Y) whenever x € Y and

X eILJY ={ANnY / A€ Z}. In addition, if X C Y N Ly, then
Dp(X U {x}) < Dp(¥).

For example:
o T, = [L]<“. Here, Z, = Z, and Dp(X) = min{|X|,w}.

o L =6 ordinal, Z, = a + 1. Here, Z, = P(c) and Dp(X) = o.t.(X).
This is the template corresponding to a fsi of length J.
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PIB Q7

Main idea: An iteration P (with finite support) along a template (L, Z)
satisfies:

@ PIB is defined for any B C L.
o If AC BC L then P[A< P|B.

@ For x € L, the generic object added at x is generic over V' B for all
B € I, that is, P[(BU {x}) = P[B x Q5.
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Iterations we are interested in: Fix 6 an uncountable regular cardinal, an
indexed template <L,f), H, M disjoint sets, L= HU M and C, € fx of
size < 6 for x € M. For A C L, by recursion on Dp(A), define a poset PA
as follows:
(i) If A has a maximum x and A, = AN L € 7, then
PJA = PJA, * Q2 where:
o If x € H then Q& =DV"™.
o If x € M and C, C A,, fix Fy is a P[C,-name of a filter base of size
< 0 (this only depends on C,) and put Qf* = M .
o If x€ M but G, € A,, then Q% = 1.

(ii) If A has a maximum x but Ay ¢ Z,, then

PJA = limdir{P|B / B C A and BN Ly € Zy]A}.
(i) If A does not have a maximum, then

PJA = limdir{P[B / 3xca(B € Z|A)} (so P|@ = 1).
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Forany AC L,
(a) PJA is ccc (moreover, Knaster) and

(b) if p € PA and X is a P]|A-name for a real, then there is C C A of size
< 0 such that p € P[C and x is a P[C-name.
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Let § < k < p < X\ be uncountable regular cardinals where  is
measurable, 0<% = 6 and \* = \. Then, there exists a ccc poset forcing
s=0<b=0=p<a=c=\

Problem
Can a similar consistency result be proven with ZFC alone?
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Fix uncountable regular cardinals 6 < p < A. For § < \ define

5= () < (J 67,0
n<w

linearly ordered by x < y iff one of the following holds:

(i) there is some k < min{|x|, |y|} such that x[k = y[k and

x(K) < y(K);

(i) x Cy and y(|x]|) is positive.

(i) y € x and x(|y|) is negative.
The family Z° if formed by finite unions of sets from

(L% / o e M} U{[x](]x| = 1),x) / x € L° is B-relevant} U{{z} / z € L°}.

(L%,7%) is an indexed template, where 70 := {Ac Z° / AC L%}.
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Shelah proved that, assuming CH and A™ = X (regular), an iteration of D
along L* (with @ =R;) forces s =R <b=0=pu<a=c=\
@ To force a > A, assume {a. / € < Kk} is a sequence of names with
N1 < Kk < A that is forced to form an a.d. family. For each € < &,
there is a B, C L* countable s.t. a is a P[B.-name.

@ By a A-system argument, wlog assume that {B, / a < w;} forms a
A-system with root R, (By,Z*[B,) = (By,1*[By) and
(P[By, aa) = (IP|By, ag) for all o < wy.

© Construct B, C L countable s.t. B, N B, = R for all & < wy and
(P[Bo, 0) = (P[By, 3,).

@ For ¢ < k there is a suitable o < wy such that B.N B, C R and

(P[(By U Be), aa, ac) ~ (P[(B, U Be), &, ac), so a, and a, are forced
to be pairwise disjoint.
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Isomorphism-of-name arguments

What happens for arbitrary 87 Assuming 0<% = 6 and A<? = ), by
changing wy by 6 and “countable” by “size < 0", we can repeat steps 1
and 2 of the previous argument, but the iteration may not be uniform
enough to find a By like in step 3, as we want to include small
Mathias-Prikry posets to force 0 < s.

Look at a & < X\: Assume such an iteration along L% and go through steps

1 and 2. Now:

3" Find & € (6, ), choose a suitable B, C L% such that B, N L% = R (the
same intersected with all B, with o < ) and extend the iteration IP[L‘S
to P[LY such that (PBo, a0) ~ (P|By, ay).

4" Same as step 4.
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Main Lemma

Assume 0<% = 9 and \<* = ).

Main Lemma

Let 0t <6 < A, P? be an iteration of D and Mathias-Prikry forcings of
size < 0 along L° and A a P|L%-name of an a.d. family of size x € (6, ).
Then, there is a § < & < A and an iteration P9 of the same type along
L% such that
(a) POIX = PY|X for all X C L7,
(b) for any P [LY-name F for a filter base of size < 6, there is an

x € M such that IFg F = F, and

(c) PYILY forces that A is not mad.




Main result

Theorem (Fischer and M.)

There is an iteration P* along L* that forces
s=0<b=0=p<a=c=A\




Further results

Theorem (Fischer and M.)

If6p < 61 < 6 < pu < X are uncountable regular, <% = 6 and \<* = ),
then there is a ccc poset that forces add(N) = 6y < cov(N) =61 <p =
g=s5=0<add(M) =cof(M) =p <non(N)=a=tr=c= A\

cov(N) non(M) cof(M) cof(N)

0, j !
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