Splitting, bounding and almost disjointness number

Diego A. Mejía
joint work with Vera Fischer

Technische Universität Wien
Winter School
February 2nd, 2015

Some classical cardinal invariants of the continuum

- For $f, g \in \omega^{\omega}, f$ is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.

Some classical cardinal invariants of the continuum

- For $f, g \in \omega^{\omega}, f$ is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- The (un)bounding number \mathfrak{b} is the least size of a \leq^{*}-unbounded family of ω^{ω}.

Some classical cardinal invariants of the continuum

- For $f, g \in \omega^{\omega}, f$ is dominated by g, denoted by $f \leq^{*} g$, iff $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
- The (un)bounding number \mathfrak{b} is the least size of a \leq^{*}-unbounded family of ω^{ω}.
- The dominating number \mathfrak{d} is the least size of a \leq^{*}-cofinal family.

Some classical cardinal invariants of the continuum

- For $X, A \in[\omega]^{\omega}, X$ splits A iff $X \cap A$ and $A \backslash X$ are infinite.

Some classical cardinal invariants of the continuum

- For $X, A \in[\omega]^{\omega}, X$ splits A iff $X \cap A$ and $A \backslash X$ are infinite.

- The splitting number \mathfrak{s} is the least size of a splitting family, that is, a subset \mathcal{F} of $[\omega]^{\omega}$ such that any member of $[\omega]^{\omega}$ is splitted by some member of \mathcal{F}.

Some classical cardinal invariants of the continuum

- For $X, A \in[\omega]^{\omega}, X$ splits A iff $X \cap A$ and $A \backslash X$ are infinite.

- The splitting number \mathfrak{s} is the least size of a splitting family, that is, a subset \mathcal{F} of $[\omega]^{\omega}$ such that any member of $[\omega]^{\omega}$ is splitted by some member of \mathcal{F}.
- $\mathcal{A} \subseteq[\omega]^{\omega}$ is an a.d. (almost disjoint) family if any two distinct members of \mathcal{A} have finite intersection.

Some classical cardinal invariants of the continuum

- For $X, A \in[\omega]^{\omega}, X$ splits A iff $X \cap A$ and $A \backslash X$ are infinite.

- The splitting number \mathfrak{s} is the least size of a splitting family, that is, a subset \mathcal{F} of $[\omega]^{\omega}$ such that any member of $[\omega]^{\omega}$ is splitted by some member of \mathcal{F}.
- $\mathcal{A} \subseteq[\omega]^{\omega}$ is an a.d. (almost disjoint) family if any two distinct members of \mathcal{A} have finite intersection.
- the almost disjointness number \mathfrak{a} is the minimal size of an infinite mad (maximal a.d.) family.

Some cardinal cardinal invariants of the continuum

Folklore

- $\aleph_{1} \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{c}$.
- $\aleph_{1} \leq \mathfrak{s} \leq \mathfrak{d}$.
- $\mathfrak{b} \leq \mathfrak{a} \leq \mathfrak{c}$.

Some cardinal cardinal invariants of the continuum

Folklore

- $\aleph_{1} \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{c}$.
- $\aleph_{1} \leq \mathfrak{s} \leq \mathfrak{d}$.
- $\mathfrak{b} \leq \mathfrak{a} \leq \mathfrak{c}$.

E.g. finite support iteration of Hechler forcing \mathbb{D} of length μ (uncountable regular) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu$.

Some cardinal cardinal invariants of the continuum

Folklore

- $\aleph_{1} \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{c}$.
- $\aleph_{1} \leq \mathfrak{s} \leq \mathfrak{d}$.
- $\mathfrak{b} \leq \mathfrak{a} \leq \mathfrak{c}$.

E.g. finite support iteration of Hechler forcing \mathbb{D} of length μ (uncountable regular) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu$.
Additionally, if $\theta<\mu$ is uncountable regular, if we alternate \mathbb{D} with Mathias-Prikry posets of size $<\theta$ (i.e., M_{F} with F a filter base of size $<\theta$) by a book-keeping devise, the resulting iteration forces $\mathfrak{s}=\theta<\mathfrak{b}=\mu$.

Main Problem

We are interested in obtaining models where three or more cardinals of this diagram are pairwise different.

Main Problem

We are interested in obtaining models where three or more cardinals of this diagram are pairwise different.

Theorem (Shelah 2004)

If $\aleph_{1}<\mu<\lambda$ are uncountable regular cardinals, then it is consistent that $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.

Main Problem

We are interested in obtaining models where three or more cardinals of this diagram are pairwise different.

Theorem (Shelah 2004)

If $\aleph_{1}<\mu<\lambda$ are uncountable regular cardinals, then it is consistent that $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.

Problem

(1) Is $\mathfrak{b}<\mathfrak{a}<\mathfrak{s}$ consistent?
(2) Is $\mathfrak{b}<\mathfrak{s}<\mathfrak{a}$ consistent?

Main Problem

We are interested in obtaining models where three or more cardinals of this diagram are pairwise different.

Theorem (Shelah 2004)

If $\aleph_{1}<\mu<\lambda$ are uncountable regular cardinals, then it is consistent that $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.

Problem

(1) Is $\mathfrak{b}<\mathfrak{a}<\mathfrak{s}$ consistent?
(2) Is $\mathfrak{b}<\mathfrak{s}<\mathfrak{a}$ consistent?
(3) Is $\aleph_{1}<\mathfrak{s}<\mathfrak{b}<\mathfrak{a}$ consistent?

Templates

For a linear order L and $x \in L$, let $L_{x}:=\{z \in L / z<x\}$.

Templates

For a linear order L and $x \in L$, let $L_{x}:=\{z \in L / z<x\}$.

Definition (Indexed template)

An indexed template is a pair $\left\langle L, \overline{\mathcal{I}}:=\left\langle\mathcal{I}_{x}\right\rangle_{x \in L}\right\rangle$ such that L is a linear order, $\mathcal{I}_{x} \subseteq \wp\left(L_{x}\right)$ for all $x \in L$ and

Templates

For a linear order L and $x \in L$, let $L_{x}:=\{z \in L / z<x\}$.

Definition (Indexed template)

An indexed template is a pair $\left\langle L, \overline{\mathcal{I}}:=\left\langle\mathcal{I}_{x}\right\rangle_{x \in L}\right\rangle$ such that L is a linear order, $\mathcal{I}_{x} \subseteq \wp\left(L_{x}\right)$ for all $x \in L$ and (1) $\varnothing \in \mathcal{I}_{x}$,

Templates

For a linear order L and $x \in L$, let $L_{x}:=\{z \in L / z<x\}$.

Definition (Indexed template)

An indexed template is a pair $\left\langle L, \overline{\mathcal{I}}:=\left\langle\mathcal{I}_{x}\right\rangle_{x \in L}\right\rangle$ such that L is a linear order, $\mathcal{I}_{x} \subseteq \wp\left(L_{x}\right)$ for all $x \in L$ and
(1) $\varnothing \in \mathcal{I}_{x}$,
(2) \mathcal{I}_{x} is closed under finite unions and intersections,

Templates

For a linear order L and $x \in L$, let $L_{x}:=\{z \in L / z<x\}$.

Definition (Indexed template)

An indexed template is a pair $\left\langle L, \overline{\mathcal{I}}:=\left\langle\mathcal{I}_{x}\right\rangle_{x \in L}\right\rangle$ such that L is a linear order, $\mathcal{I}_{x} \subseteq \wp\left(L_{x}\right)$ for all $x \in L$ and
(1) $\varnothing \in \mathcal{I}_{x}$,
(2) \mathcal{I}_{x} is closed under finite unions and intersections,
(3) $\mathcal{I}_{x} \subseteq \mathcal{I}_{y}$ if $x<y$ and

Templates

For a linear order L and $x \in L$, let $L_{x}:=\{z \in L / z<x\}$.

Definition (Indexed template)

An indexed template is a pair $\left\langle L, \overline{\mathcal{I}}:=\left\langle\mathcal{I}_{x}\right\rangle_{x \in L}\right\rangle$ such that L is a linear order, $\mathcal{I}_{x} \subseteq \wp\left(L_{x}\right)$ for all $x \in L$ and
(1) $\varnothing \in \mathcal{I}_{x}$,
(2) \mathcal{I}_{x} is closed under finite unions and intersections,
(3) $\mathcal{I}_{x} \subseteq \mathcal{I}_{y}$ if $x<y$ and
(4) $\mathcal{I}(L):=\bigcup_{x \in L} \mathcal{I}_{x} \cup\{L\}$ is well-founded by the subset relation.

Templates

For a linear order L and $x \in L$, let $L_{x}:=\{z \in L / z<x\}$.

Definition (Indexed template)

An indexed template is a pair $\left\langle L, \overline{\mathcal{I}}:=\left\langle\mathcal{I}_{x}\right\rangle_{x \in L}\right\rangle$ such that L is a linear order, $\mathcal{I}_{x} \subseteq \wp\left(L_{x}\right)$ for all $x \in L$ and
(1) $\varnothing \in \mathcal{I}_{x}$,
(2) \mathcal{I}_{x} is closed under finite unions and intersections,
(3) $\mathcal{I}_{x} \subseteq \mathcal{I}_{y}$ if $x<y$ and
(4) $\mathcal{I}(L):=\bigcup_{x \in L} \mathcal{I}_{x} \cup\{L\}$ is well-founded by the subset relation.

For $x \in L, \hat{\mathcal{I}}_{x}$ denotes the ideal (on L_{x}) generated by \mathcal{I}_{x}.

Templates

The well foundedness allows to define a function $\mathrm{Dp}=\mathrm{Dp}^{\overline{\mathcal{I}}}: \wp(L) \rightarrow \mathbf{O N}$ such that, for $X \subseteq Y \subseteq L$,

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and

Templates

The well foundedness allows to define a function $\mathrm{Dp}=\mathrm{Dp}^{\overline{\mathcal{I}}}: \wp(L) \rightarrow \mathbf{O N}$ such that, for $X \subseteq Y \subseteq L$,

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- $\operatorname{Dp}(X)<\operatorname{Dp}(Y)$ whenever $x \in Y$ and $X \in \mathcal{I}_{x}\left\lceil Y=\left\{A \cap Y / A \in \mathcal{I}_{x}\right\}\right.$.

Templates

The well foundedness allows to define a function $\mathrm{Dp}=\mathrm{Dp}^{\overline{\mathcal{I}}}: \wp(L) \rightarrow \mathbf{O N}$ such that, for $X \subseteq Y \subseteq L$,

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- $\operatorname{Dp}(X)<\operatorname{Dp}(Y)$ whenever $x \in Y$ and $X \in \mathcal{I}_{x} \upharpoonright Y=\left\{A \cap Y / A \in \mathcal{I}_{x}\right\}$. In addition, if $X \subsetneq Y \cap L_{x}$, then $\operatorname{Dp}(X \cup\{x\})<\operatorname{Dp}(Y)$.

Templates

The well foundedness allows to define a function $\mathrm{Dp}=\mathrm{Dp}^{\overline{\mathcal{I}}}: \wp(L) \rightarrow \mathbf{O N}$ such that, for $X \subseteq Y \subseteq L$,

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- $\operatorname{Dp}(X)<\operatorname{Dp}(Y)$ whenever $x \in Y$ and $X \in \mathcal{I}_{x} \upharpoonright Y=\left\{A \cap Y / A \in \mathcal{I}_{x}\right\}$. In addition, if $X \subsetneq Y \cap L_{x}$, then $\operatorname{Dp}(X \cup\{x\})<\operatorname{Dp}(Y)$.
For example:
- $\mathcal{I}_{x}=\left[L_{x}\right]^{<\omega}$.

Templates

The well foundedness allows to define a function $\mathrm{Dp}=\mathrm{Dp}^{\overline{\mathcal{I}}}: \wp(L) \rightarrow \mathbf{O N}$ such that, for $X \subseteq Y \subseteq L$,

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- $\operatorname{Dp}(X)<\operatorname{Dp}(Y)$ whenever $x \in Y$ and $X \in \mathcal{I}_{x} \upharpoonright Y=\left\{A \cap Y / A \in \mathcal{I}_{x}\right\}$. In addition, if $X \subsetneq Y \cap L_{x}$, then $\operatorname{Dp}(X \cup\{x\})<\operatorname{Dp}(Y)$.
For example:
- $\mathcal{I}_{x}=\left[L_{x}\right]^{<\omega}$. Here, $\hat{\mathcal{I}}_{x}=\mathcal{I}_{x}$ and $\operatorname{Dp}(X)=\min \{|X|, \omega\}$.

Templates

The well foundedness allows to define a function $\mathrm{Dp}=\mathrm{Dp}^{\overline{\mathcal{I}}}: \wp(L) \rightarrow \mathbf{O N}$ such that, for $X \subseteq Y \subseteq L$,

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- $\operatorname{Dp}(X)<\operatorname{Dp}(Y)$ whenever $x \in Y$ and $X \in \mathcal{I}_{x} \upharpoonright Y=\left\{A \cap Y / A \in \mathcal{I}_{x}\right\}$. In addition, if $X \subsetneq Y \cap L_{x}$, then $\operatorname{Dp}(X \cup\{x\})<\operatorname{Dp}(Y)$.
For example:
- $\mathcal{I}_{x}=\left[L_{x}\right]^{<\omega}$. Here, $\hat{\mathcal{I}}_{x}=\mathcal{I}_{x}$ and $\operatorname{Dp}(X)=\min \{|X|, \omega\}$.
- $L=\delta$ ordinal, $\mathcal{I}_{\alpha}=\alpha+1$.

Templates

The well foundedness allows to define a function $\mathrm{Dp}=\mathrm{Dp}^{\overline{\mathcal{I}}}: \wp(L) \rightarrow \mathbf{O N}$ such that, for $X \subseteq Y \subseteq L$,

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- $\operatorname{Dp}(X)<\operatorname{Dp}(Y)$ whenever $x \in Y$ and $X \in \mathcal{I}_{x} \upharpoonright Y=\left\{A \cap Y / A \in \mathcal{I}_{x}\right\}$. In addition, if $X \subsetneq Y \cap L_{x}$, then $\operatorname{Dp}(X \cup\{x\})<\operatorname{Dp}(Y)$.
For example:
- $\mathcal{I}_{x}=\left[L_{x}\right]^{<\omega}$. Here, $\hat{\mathcal{I}}_{x}=\mathcal{I}_{x}$ and $\operatorname{Dp}(X)=\min \{|X|, \omega\}$.
- $L=\delta$ ordinal, $\mathcal{I}_{\alpha}=\alpha+1$. Here, $\hat{\mathcal{I}}_{\alpha}=\mathcal{P}(\alpha)$ and $\operatorname{Dp}(X)=$ o.t. (X).

Templates

The well foundedness allows to define a function $\mathrm{Dp}=\mathrm{Dp}^{\overline{\mathcal{I}}}: \wp(L) \rightarrow \mathbf{O N}$ such that, for $X \subseteq Y \subseteq L$,

- $\operatorname{Dp}(X) \leq \operatorname{Dp}(Y)$ and
- $\operatorname{Dp}(X)<\operatorname{Dp}(Y)$ whenever $x \in Y$ and $X \in \mathcal{I}_{x} \upharpoonright Y=\left\{A \cap Y / A \in \mathcal{I}_{x}\right\}$. In addition, if $X \subsetneq Y \cap L_{x}$, then $\operatorname{Dp}(X \cup\{x\})<\operatorname{Dp}(Y)$.
For example:
- $\mathcal{I}_{x}=\left[L_{x}\right]^{<\omega}$. Here, $\hat{\mathcal{I}}_{x}=\mathcal{I}_{x}$ and $\operatorname{Dp}(X)=\min \{|X|, \omega\}$.
- $L=\delta$ ordinal, $\mathcal{I}_{\alpha}=\alpha+1$. Here, $\hat{\mathcal{I}}_{\alpha}=\mathcal{P}(\alpha)$ and $\operatorname{Dp}(X)=$ o.t. (X).

This is the template corresponding to a fsi of length δ.

Iterations along a template

Main idea: An iteration \mathbb{P} (with finite support) along a template $\langle L, \overline{\mathcal{I}}\rangle$ satisfies:

Iterations along a template

Main idea: An iteration \mathbb{P} (with finite support) along a template $\langle L, \overline{\mathcal{I}}\rangle$ satisfies:

- $\mathbb{P} \upharpoonright B$ is defined for any $B \subseteq L$.

Iterations along a template

$\mathrm{P} \mid B$

Main idea: An iteration \mathbb{P} (with finite support) along a template $\langle L, \overline{\mathcal{I}}\rangle$ satisfies:

- $\mathbb{P} \upharpoonright B$ is defined for any $B \subseteq L$.
- If $A \subseteq B \subseteq L$ then $\mathbb{P} \upharpoonright A \lessdot \mathbb{P} \upharpoonright B$.

Iterations along a template

Main idea: An iteration \mathbb{P} (with finite support) along a template $\langle L, \overline{\mathcal{I}}\rangle$ satisfies:

- $\mathbb{P} \upharpoonright B$ is defined for any $B \subseteq L$.
- If $A \subseteq B \subseteq L$ then $\mathbb{P} \upharpoonright A \lessdot \mathbb{P} \backslash B$.
- For $x \in L$, the generic object added at x is generic over $V^{\mathbb{P} \mid B}$ for all $B \in \hat{\mathcal{I}}_{x}$,

Iterations along a template

Main idea: An iteration \mathbb{P} (with finite support) along a template $\langle L, \overline{\mathcal{I}}\rangle$ satisfies:

- $\mathbb{P} \upharpoonright B$ is defined for any $B \subseteq L$.
- If $A \subseteq B \subseteq L$ then $\mathbb{P} \upharpoonright A \lessdot \mathbb{P} \upharpoonright B$.
- For $x \in L$, the generic object added at x is generic over $V^{\mathbb{P} \mid B}$ for all $B \in \hat{\mathcal{I}}_{x}$, that is, $\mathbb{P} \upharpoonright(B \cup\{x\})=\mathbb{P} \upharpoonright B * \dot{\mathbb{Q}}_{x}^{B}$.

Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}}\rangle, H, M$ disjoint sets, $L=H \cup M$ and $C_{x} \in \hat{\mathcal{I}}_{x}$ of size $<\theta$ for $x \in M$.

Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}}\rangle, H, M$ disjoint sets, $L=H \cup M$ and $C_{x} \in \hat{\mathcal{I}}_{x}$ of size $<\theta$ for $x \in M$. For $A \subseteq L$, by recursion on $\operatorname{Dp}(A)$, define a poset $\mathbb{P} \upharpoonright A$ as follows:

Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}}\rangle, H, M$ disjoint sets, $L=H \cup M$ and $C_{x} \in \hat{\mathcal{I}}_{x}$ of size $<\theta$ for $x \in M$. For $A \subseteq L$, by recursion on $\operatorname{Dp}(A)$, define a poset $\mathbb{P} \upharpoonright A$ as follows:
(i) If A has a maximum x and $A_{x}=A \cap L_{x} \in \hat{\mathcal{I}}_{x}$ then $\mathbb{P} \upharpoonright A=\mathbb{P} \upharpoonright A_{x} * \dot{\mathbb{Q}}_{x}^{A_{x}}$ where:

Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}}\rangle, H, M$ disjoint sets, $L=H \cup M$ and $C_{x} \in \hat{\mathcal{I}}_{x}$ of size $<\theta$ for $x \in M$. For $A \subseteq L$, by recursion on $\operatorname{Dp}(A)$, define a poset $\mathbb{P} \upharpoonright A$ as follows:
(i) If A has a maximum x and $A_{x}=A \cap L_{x} \in \hat{\mathcal{I}}_{x}$ then $\mathbb{P} \upharpoonright A=\mathbb{P} \upharpoonright A_{x} * \dot{\mathbb{Q}}_{x}^{A_{x}}$ where:

- If $x \in H$ then $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{D}^{V^{\mathbb{P} \mid A_{x}}}$.

Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}}\rangle, H, M$ disjoint sets, $L=H \cup M$ and $C_{x} \in \hat{\mathcal{I}}_{x}$ of size $<\theta$ for $x \in M$. For $A \subseteq L$, by recursion on $\operatorname{Dp}(A)$, define a poset $\mathbb{P} \upharpoonright A$ as follows:
(i) If A has a maximum x and $A_{x}=A \cap L_{x} \in \hat{\mathcal{I}}_{x}$ then $\mathbb{P} \upharpoonright A=\mathbb{P} \upharpoonright A_{x} * \dot{\mathbb{Q}}_{x}^{A_{x}}$ where:

- If $x \in H$ then $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{D}^{V^{P \mid A_{x}}}$.
- If $x \in M$ and $C_{x} \subseteq A_{x}$, fix \dot{F}_{x} is a $\mathbb{P} \upharpoonright C_{x}$-name of a filter base of size $<\theta$ (this only depends on C_{x}) and put $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{M}_{\dot{F}_{x}}$.

Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}}\rangle, H, M$ disjoint sets, $L=H \cup M$ and $C_{x} \in \hat{\mathcal{I}}_{x}$ of size $<\theta$ for $x \in M$. For $A \subseteq L$, by recursion on $\operatorname{Dp}(A)$, define a poset $\mathbb{P} \upharpoonright A$ as follows:
(i) If A has a maximum x and $A_{x}=A \cap L_{x} \in \hat{\mathcal{I}}_{x}$ then $\mathbb{P} \upharpoonright A=\mathbb{P} \upharpoonright A_{x} * \dot{\mathbb{Q}}_{x}^{A_{x}}$ where:

- If $x \in H$ then $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{D}^{V^{\mathbb{P} A_{x}}}$.
- If $x \in M$ and $C_{x} \subseteq A_{x}$, fix \dot{F}_{x} is a $\mathbb{P} \mid C_{x}$-name of a filter base of size $<\theta$ (this only depends on C_{x}) and put $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{M}_{\dot{F}_{x}}$.
- If $x \in M$ but $C_{x} \nsubseteq A_{x}$, then $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{1}$.

Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}}\rangle, H, M$ disjoint sets, $L=H \cup M$ and $C_{x} \in \hat{\mathcal{I}}_{x}$ of size $<\theta$ for $x \in M$. For $A \subseteq L$, by recursion on $\operatorname{Dp}(A)$, define a poset $\mathbb{P} \upharpoonright A$ as follows:
(i) If A has a maximum x and $A_{x}=A \cap L_{x} \in \hat{\mathcal{I}}_{x}$ then $\mathbb{P} \upharpoonright A=\mathbb{P} \upharpoonright A_{x} * \dot{\mathbb{Q}}_{x}^{A_{x}}$ where:

- If $x \in H$ then $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{D}^{V^{\mathbb{P} A_{x}}}$.
- If $x \in M$ and $C_{x} \subseteq A_{x}$, fix \dot{F}_{x} is a $\mathbb{P} \upharpoonright C_{x}$-name of a filter base of size $<\theta$ (this only depends on C_{x}) and put $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{M}_{\dot{F}_{x}}$.
- If $x \in M$ but $C_{x} \nsubseteq A_{x}$, then $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{1}$.
(ii) If A has a maximum x but $A_{x} \notin \hat{\mathcal{I}}_{x}$, then $\mathbb{P}\left\lceil A=\operatorname{limdir}\left\{\mathbb{P} \upharpoonright B / B \subseteq A\right.\right.$ and $\left.B \cap L_{x} \in \mathcal{I}_{x} \backslash A\right\}$.

Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an indexed template $\langle L, \overline{\mathcal{I}}\rangle, H, M$ disjoint sets, $L=H \cup M$ and $C_{x} \in \hat{\mathcal{I}}_{x}$ of size $<\theta$ for $x \in M$. For $A \subseteq L$, by recursion on $\operatorname{Dp}(A)$, define a poset $\mathbb{P} \upharpoonright A$ as follows:
(i) If A has a maximum x and $A_{x}=A \cap L_{x} \in \hat{\mathcal{I}}_{x}$ then
$\mathbb{P} \upharpoonright A=\mathbb{P} \upharpoonright A_{x} * \dot{\mathbb{Q}}_{x}^{A_{x}}$ where:

- If $x \in H$ then $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{D}^{V^{P \mid A_{x}}}$.
- If $x \in M$ and $C_{x} \subseteq A_{x}$, fix \dot{F}_{x} is a $\mathbb{P} \upharpoonright C_{x}$-name of a filter base of size $<\theta$ (this only depends on C_{x}) and put $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{M}_{\dot{F}_{x}}$.
- If $x \in M$ but $C_{x} \nsubseteq A_{x}$, then $\dot{\mathbb{Q}}_{x}^{A_{x}}=\mathbb{1}$.
(ii) If A has a maximum x but $A_{x} \notin \hat{\mathcal{I}}_{x}$, then $\mathbb{P} \upharpoonright A=\operatorname{limdir}\left\{\mathbb{P} \upharpoonright B / B \subseteq A\right.$ and $\left.B \cap L_{x} \in \mathcal{I}_{x} \backslash A\right\}$.
(iii) If A does not have a maximum, then $\mathbb{P} \upharpoonright A=\operatorname{limdir}\left\{\mathbb{P} \upharpoonright B / \exists_{x \in A}(B \in \mathcal{I} \upharpoonright A)\right\}($ so $\mathbb{P} \upharpoonright \varnothing=\mathbb{1})$.

Iterations along a template

Lemma

For any $A \subseteq L$,
(a) $\mathbb{P} \upharpoonright A$ is ccc (moreover, Knaster) and

Iterations along a template

Lemma

For any $A \subseteq L$,
(a) $\mathbb{P} \upharpoonright A$ is ccc (moreover, Knaster) and
(b) if $p \in \mathbb{P} \backslash A$ and \dot{x} is a $\mathbb{P} \backslash A$-name for a real, then there is $C \subseteq A$ of size $<\theta$ such that $p \in \mathbb{P} \upharpoonright C$ and \dot{x} is a $\mathbb{P} \upharpoonright C$-name.

A consistency result

```
Theorem (M.)
Let }0<\kappa<\mu<\lambda\mathrm{ be uncountable regular cardinals where }\kappa\mathrm{ is
measurable, 㫜暗暗 and }\mp@subsup{\lambda}{}{\kappa}=\lambda\mathrm{ . Then, there exists a ccc poset forcing
s}=0<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda
```


A consistency result

```
Theorem (M.)
Let }0<\kappa<\mu<\lambda\mathrm{ be uncountable regular cardinals where }\kappa\mathrm{ is
measurable, 㫜是=0 and }\mp@subsup{\lambda}{}{\kappa}=\lambda\mathrm{ . Then, there exists a ccc poset forcing
s}=0<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda
```


Problem

Can a similar consistency result be proven with ZFC alone?

Shelah's template

Fix uncountable regular cardinals $\theta<\mu<\lambda$. For $\delta \leq \lambda$ define

$$
L^{\delta}=(\lambda \mu) \times \bigcup_{n<\omega}\left(\delta^{*}, \delta\right)^{n}
$$

Shelah's template

Fix uncountable regular cardinals $\theta<\mu<\lambda$. For $\delta \leq \lambda$ define

$$
L^{\delta}=(\lambda \mu) \times \bigcup_{n<\omega}\left(\delta^{*}, \delta\right)^{n}
$$

linearly ordered by $x<y$ iff one of the following holds:
(i) there is some $k<\min \{|x|,|y|\}$ such that $x \upharpoonright k=y \upharpoonright k$ and $x(k)<y(k)$;
(ii) $x \subseteq y$ and $y(|x|)$ is positive.
(iii) $y \subseteq x$ and $x(|y|)$ is negative.

Shelah's template

Fix uncountable regular cardinals $\theta<\mu<\lambda$. For $\delta \leq \lambda$ define

$$
L^{\delta}=(\lambda \mu) \times \bigcup_{n<\omega}\left(\delta^{*}, \delta\right)^{n}
$$

linearly ordered by $x<y$ iff one of the following holds:
(i) there is some $k<\min \{|x|,|y|\}$ such that $x \upharpoonright k=y \upharpoonright k$ and

$$
x(k)<y(k)
$$

(ii) $x \subseteq y$ and $y(|x|)$ is positive.
(iii) $y \subseteq x$ and $x(|y|)$ is negative.

The family \mathcal{I}^{δ} if formed by finite unions of sets from
$\left\{L_{\alpha}^{\delta} / \alpha \in \lambda \mu\right\} \cup\left\{[x \mid(|x|-1), x) / x \in L^{\delta}\right.$ is θ-relevant $\} \cup\left\{\{z\} / z \in L^{\delta}\right\}$.

Shelah's template

Fix uncountable regular cardinals $\theta<\mu<\lambda$. For $\delta \leq \lambda$ define

$$
L^{\delta}=(\lambda \mu) \times \bigcup_{n<\omega}\left(\delta^{*}, \delta\right)^{n}
$$

linearly ordered by $x<y$ iff one of the following holds:
(i) there is some $k<\min \{|x|,|y|\}$ such that $x \upharpoonright k=y \upharpoonright k$ and

$$
x(k)<y(k)
$$

(ii) $x \subseteq y$ and $y(|x|)$ is positive.
(iii) $y \subseteq x$ and $x(|y|)$ is negative.

The family \mathcal{I}^{δ} if formed by finite unions of sets from
$\left\{L_{\alpha}^{\delta} / \alpha \in \lambda \mu\right\} \cup\left\{[x \mid(|x|-1), x) / x \in L^{\delta}\right.$ is θ-relevant $\} \cup\left\{\{z\} / z \in L^{\delta}\right\}$.
$\left\langle L^{\delta}, \overline{\mathcal{I}}^{\delta}\right\rangle$ is an indexed template, where $\mathcal{I}_{x}^{\delta}:=\left\{A \in \mathcal{I}^{\delta} / A \subseteq L_{x}^{\delta}\right\}$.

Isomorphism-of-name arguments

Shelah proved that, assuming CH and $\lambda^{\aleph_{0}}=\lambda$ (regular), an iteration of \mathbb{D} along L^{λ} (with $\theta=\aleph_{1}$) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.

Isomorphism-of-name arguments

Shelah proved that, assuming CH and $\lambda^{\aleph_{0}}=\lambda$ (regular), an iteration of \mathbb{D} along L^{λ} (with $\theta=\aleph_{1}$) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.
(1) To force $\mathfrak{a} \geq \lambda$, assume $\left\{\dot{a}_{\epsilon} / \epsilon<\kappa\right\}$ is a sequence of names with $\aleph_{1}<\kappa<\lambda$ that is forced to form an a.d. family.

Isomorphism-of-name arguments

Shelah proved that, assuming CH and $\lambda^{\aleph_{0}}=\lambda$ (regular), an iteration of \mathbb{D} along L^{λ} (with $\theta=\aleph_{1}$) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.
(1) To force $\mathfrak{a} \geq \lambda$, assume $\left\{\dot{a}_{\epsilon} / \epsilon<\kappa\right\}$ is a sequence of names with $\aleph_{1}<\kappa<\lambda$ that is forced to form an a.d. family. For each $\epsilon<\kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$-name.

Isomorphism-of-name arguments

Shelah proved that, assuming CH and $\lambda^{\aleph_{0}}=\lambda$ (regular), an iteration of \mathbb{D} along L^{λ} (with $\theta=\aleph_{1}$) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.
(1) To force $\mathfrak{a} \geq \lambda$, assume $\left\{\dot{a}_{\epsilon} / \epsilon<\kappa\right\}$ is a sequence of names with $\aleph_{1}<\kappa<\lambda$ that is forced to form an a.d. family. For each $\epsilon<\kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$-name.
(2) By a Δ-system argument, wlog assume that $\left\{B_{\alpha} / \alpha<\omega_{1}\right\}$ forms a Δ-system with root $\left.R,\left\langle B_{\alpha}, \overline{\mathcal{I}}^{\lambda}\right\rangle B_{\alpha}\right\rangle \cong\left\langle B_{0}, \overline{\mathcal{I}}^{\lambda} \mid B_{0}\right\rangle$ and $\left\langle\mathbb{P} \mid B_{\alpha}, \dot{a}_{\alpha}\right\rangle \cong\left\langle\mathbb{P} \mid B_{0}, \dot{a}_{0}\right\rangle$ for all $\alpha<\omega_{1}$.

Isomorphism-of-name arguments

Shelah proved that, assuming CH and $\lambda^{\aleph_{0}}=\lambda$ (regular), an iteration of \mathbb{D} along L^{λ} (with $\theta=\aleph_{1}$) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.
(1) To force $\mathfrak{a} \geq \lambda$, assume $\left\{\dot{a}_{\epsilon} / \epsilon<\kappa\right\}$ is a sequence of names with $\aleph_{1}<\kappa<\lambda$ that is forced to form an a.d. family. For each $\epsilon<\kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$-name.
(2) By a Δ-system argument, wlog assume that $\left\{B_{\alpha} / \alpha<\omega_{1}\right\}$ forms a Δ-system with root $R,\left\langle B_{\alpha}, \overline{\mathcal{I}}^{\lambda} \mid B_{\alpha}\right\rangle \cong\left\langle B_{0}, \overline{\mathcal{I}}^{\lambda} \mid B_{0}\right\rangle$ and $\left\langle\mathbb{P} \mid B_{\alpha}, \dot{a}_{\alpha}\right\rangle \cong\left\langle\mathbb{P} \mid B_{0}, \dot{a}_{0}\right\rangle$ for all $\alpha<\omega_{1}$.
(3) Construct $B_{\kappa} \subseteq L^{\lambda}$ countable s.t. $B_{\kappa} \cap B_{\alpha}=R$ for all $\alpha<\omega_{1}$ and $\left\langle\mathbb{P} \mid B_{0}, \dot{a}_{0}\right\rangle \simeq\left\langle\mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa}\right\rangle$.

Isomorphism-of-name arguments

Shelah proved that, assuming CH and $\lambda^{\aleph_{0}}=\lambda$ (regular), an iteration of \mathbb{D} along L^{λ} (with $\theta=\aleph_{1}$) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.
(1) To force $\mathfrak{a} \geq \lambda$, assume $\left\{\dot{a}_{\epsilon} / \epsilon<\kappa\right\}$ is a sequence of names with $\aleph_{1}<\kappa<\lambda$ that is forced to form an a.d. family. For each $\epsilon<\kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$-name.
(2) By a Δ-system argument, wlog assume that $\left\{B_{\alpha} / \alpha<\omega_{1}\right\}$ forms a Δ-system with root $\left.R,\left\langle B_{\alpha}, \overline{\mathcal{I}}^{\lambda}\right\rangle B_{\alpha}\right\rangle \cong\left\langle B_{0}, \overline{\mathcal{I}}^{\lambda} \mid B_{0}\right\rangle$ and $\left\langle\mathbb{P} \mid B_{\alpha}, \dot{a}_{\alpha}\right\rangle \cong\left\langle\mathbb{P} \mid B_{0}, \dot{a}_{0}\right\rangle$ for all $\alpha<\omega_{1}$.
(3) Construct $B_{\kappa} \subseteq L^{\lambda}$ countable s.t. $B_{\kappa} \cap B_{\alpha}=R$ for all $\alpha<\omega_{1}$ and $\left\langle\mathbb{P} \mid B_{0}, \dot{a}_{0}\right\rangle \simeq\left\langle\mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa}\right\rangle$.
(9) For $\epsilon<\kappa$ there is a suitable $\alpha<\omega_{1}$ such that $B_{\epsilon} \cap B_{\alpha} \subseteq R$ and $\left\langle\mathbb{P} \upharpoonright\left(B_{\alpha} \cup B_{\epsilon}\right), \dot{a}_{\alpha}, \dot{a}_{\epsilon}\right\rangle \simeq\left\langle\mathbb{P} \upharpoonright\left(B_{\kappa} \cup B_{\epsilon}\right), \dot{a}_{\kappa}, \dot{a}_{\epsilon}\right\rangle$,

Isomorphism-of-name arguments

Shelah proved that, assuming CH and $\lambda^{\aleph_{0}}=\lambda$ (regular), an iteration of \mathbb{D} along L^{λ} (with $\theta=\aleph_{1}$) forces $\mathfrak{s}=\aleph_{1}<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.
(1) To force $\mathfrak{a} \geq \lambda$, assume $\left\{\dot{a}_{\epsilon} / \epsilon<\kappa\right\}$ is a sequence of names with $\aleph_{1}<\kappa<\lambda$ that is forced to form an a.d. family. For each $\epsilon<\kappa$, there is a $B_{\epsilon} \subseteq L^{\lambda}$ countable s.t. \dot{a}_{ϵ} is a $\mathbb{P} \upharpoonright B_{\epsilon}$-name.
(2) By a Δ-system argument, wlog assume that $\left\{B_{\alpha} / \alpha<\omega_{1}\right\}$ forms a Δ-system with root $\left.R,\left\langle B_{\alpha}, \overline{\mathcal{I}}^{\lambda}\right\rangle B_{\alpha}\right\rangle \cong\left\langle B_{0}, \overline{\mathcal{I}}^{\lambda} \mid B_{0}\right\rangle$ and $\left\langle\mathbb{P} \mid B_{\alpha}, \dot{a}_{\alpha}\right\rangle \cong\left\langle\mathbb{P} \mid B_{0}, \dot{a}_{0}\right\rangle$ for all $\alpha<\omega_{1}$.
(3) Construct $B_{\kappa} \subseteq L^{\lambda}$ countable s.t. $B_{\kappa} \cap B_{\alpha}=R$ for all $\alpha<\omega_{1}$ and $\left\langle\mathbb{P} \mid B_{0}, \dot{a}_{0}\right\rangle \simeq\left\langle\mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa}\right\rangle$.
(9) For $\epsilon<\kappa$ there is a suitable $\alpha<\omega_{1}$ such that $B_{\epsilon} \cap B_{\alpha} \subseteq R$ and $\left\langle\mathbb{P} \mid\left(B_{\alpha} \cup B_{\epsilon}\right), \dot{a}_{\alpha}, \dot{a}_{\epsilon}\right\rangle \simeq\left\langle\mathbb{P} \mid\left(B_{\kappa} \cup B_{\epsilon}\right), \dot{a}_{\kappa}, \dot{a}_{\epsilon}\right\rangle$, so \dot{a}_{κ} and \dot{a}_{α} are forced to be pairwise disjoint.

Isomorphism-of-name arguments

What happens for arbitrary θ ?

Isomorphism-of-name arguments

What happens for arbitrary θ ? Assuming $\theta^{<\theta}=\theta$ and $\lambda^{<\theta}=\lambda$, by changing ω_{1} by θ and "countable" by "size $<\theta$ ", we can repeat steps 1 and 2 of the previous argument,

Isomorphism-of-name arguments

What happens for arbitrary θ ? Assuming $\theta^{<\theta}=\theta$ and $\lambda^{<\theta}=\lambda$, by changing ω_{1} by θ and "countable" by "size $<\theta$ ", we can repeat steps 1 and 2 of the previous argument, but the iteration may not be uniform enough to find a B_{κ} like in step 3, as we want to include small Mathias-Prikry posets to force $\theta \leq \mathfrak{s}$.

Isomorphism-of-name arguments

What happens for arbitrary θ ? Assuming $\theta^{<\theta}=\theta$ and $\lambda^{<\theta}=\lambda$, by changing ω_{1} by θ and "countable" by "size $<\theta$ ", we can repeat steps 1 and 2 of the previous argument, but the iteration may not be uniform enough to find a B_{κ} like in step 3 , as we want to include small Mathias-Prikry posets to force $\theta \leq \mathfrak{s}$.

Look at a $\delta<\lambda$: Assume such an iteration along L^{δ} and go through steps 1 and 2.

Isomorphism-of-name arguments

What happens for arbitrary θ ? Assuming $\theta^{<\theta}=\theta$ and $\lambda^{<\theta}=\lambda$, by changing ω_{1} by θ and "countable" by "size $<\theta$ ", we can repeat steps 1 and 2 of the previous argument, but the iteration may not be uniform enough to find a B_{κ} like in step 3 , as we want to include small Mathias-Prikry posets to force $\theta \leq \mathfrak{s}$.

Look at a $\delta<\lambda$: Assume such an iteration along L^{δ} and go through steps 1 and 2. Now:
3^{\prime} Find $\delta^{\prime} \in(\delta, \lambda)$, choose a suitable $B_{\kappa} \subseteq L^{\delta^{\prime}}$ such that $B_{\kappa} \cap L^{\delta}=R$ (the same intersected with all B_{α} with $\alpha<\theta$) and extend the iteration $\mathbb{P} \upharpoonright L^{\delta}$ to $\mathbb{P}\left\lceil L^{\delta^{\prime}}\right.$ such that $\left\langle\mathbb{P} \upharpoonright B_{0}, \dot{a}_{0}\right\rangle \simeq\left\langle\mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa}\right\rangle$.

Isomorphism-of-name arguments

What happens for arbitrary θ ? Assuming $\theta^{<\theta}=\theta$ and $\lambda^{<\theta}=\lambda$, by changing ω_{1} by θ and "countable" by "size $<\theta$ ", we can repeat steps 1 and 2 of the previous argument, but the iteration may not be uniform enough to find a B_{κ} like in step 3 , as we want to include small Mathias-Prikry posets to force $\theta \leq \mathfrak{s}$.

Look at a $\delta<\lambda$: Assume such an iteration along L^{δ} and go through steps 1 and 2. Now:
3^{\prime} Find $\delta^{\prime} \in(\delta, \lambda)$, choose a suitable $B_{\kappa} \subseteq L^{\delta^{\prime}}$ such that $B_{\kappa} \cap L^{\delta}=R$ (the same intersected with all B_{α} with $\alpha<\theta$) and extend the iteration $\mathbb{P} \upharpoonright L^{\delta}$ to $\mathbb{P}\left\lceil L^{\delta^{\prime}}\right.$ such that $\left\langle\mathbb{P} \upharpoonright B_{0}, \dot{a}_{0}\right\rangle \simeq\left\langle\mathbb{P} \upharpoonright B_{\kappa}, \dot{a}_{\kappa}\right\rangle$.
4' Same as step 4.

Main Lemma

Assume $\theta^{<\theta}=\theta$ and $\lambda^{<\lambda}=\lambda$.

Main Lemma

Assume $\theta^{<\theta}=\theta$ and $\lambda^{<\lambda}=\lambda$.

Main Lemma

Let $\theta^{+}<\delta<\lambda, \mathbb{P}^{\delta}$ be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $<\theta$ along L^{δ} and \dot{A} a $\mathbb{P}\left\lceil L^{\delta}\right.$-name of an a.d. family of size $\kappa \in(\theta, \lambda)$.

Main Lemma

Assume $\theta^{<\theta}=\theta$ and $\lambda^{<\lambda}=\lambda$.

Main Lemma

Let $\theta^{+}<\delta<\lambda, \mathbb{P}^{\delta}$ be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $<\theta$ along L^{δ} and \dot{A} a $\mathbb{P}\left\lceil L^{\delta}\right.$-name of an a.d. family of size $\kappa \in(\theta, \lambda)$. Then, there is a $\delta<\delta^{\prime}<\lambda$ and an iteration $\mathbb{P}^{\delta^{\prime}}$ of the same type along $L^{\delta^{\prime}}$ such that

Main Lemma

Assume $\theta^{<\theta}=\theta$ and $\lambda^{<\lambda}=\lambda$.

Main Lemma

Let $\theta^{+}<\delta<\lambda, \mathbb{P}^{\delta}$ be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $<\theta$ along L^{δ} and \dot{A} a $\mathbb{P}\left\lceil L^{\delta}\right.$-name of an a.d. family of size $\kappa \in(\theta, \lambda)$. Then, there is a $\delta<\delta^{\prime}<\lambda$ and an iteration $\mathbb{P}^{\delta^{\prime}}$ of the same type along $L^{\delta^{\prime}}$ such that
(a) $\mathbb{P}^{\delta}\left|X=\mathbb{P}^{\delta^{\prime}}\right| X$ for all $X \subseteq L^{\delta}$,

Main Lemma

Assume $\theta^{<\theta}=\theta$ and $\lambda^{<\lambda}=\lambda$.

Main Lemma

Let $\theta^{+}<\delta<\lambda, \mathbb{P}^{\delta}$ be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $<\theta$ along L^{δ} and \dot{A} a $\mathbb{P}\left\lceil L^{\delta}\right.$-name of an a.d. family of size $\kappa \in(\theta, \lambda)$. Then, there is a $\delta<\delta^{\prime}<\lambda$ and an iteration $\mathbb{P}^{\delta^{\prime}}$ of the same type along $L^{\delta^{\prime}}$ such that
(a) $\mathbb{P}^{\delta}\left|X=\mathbb{P}^{\delta^{\prime}}\right| X$ for all $X \subseteq L^{\delta}$,
(b) for any $\mathbb{P}^{\delta^{\prime}} \backslash L^{\delta^{\prime}}$-name \dot{F} for a filter base of size $<\theta$, there is an $x \in M^{\delta^{\prime}}$ such that $\Vdash_{\delta^{\prime}} \dot{F}=\dot{F}_{x}$ and

Main Lemma

Assume $\theta^{<\theta}=\theta$ and $\lambda^{<\lambda}=\lambda$.

Main Lemma

Let $\theta^{+}<\delta<\lambda, \mathbb{P}^{\delta}$ be an iteration of \mathbb{D} and Mathias-Prikry forcings of size $<\theta$ along L^{δ} and \dot{A} a $\mathbb{P}\left\lceil L^{\delta}\right.$-name of an a.d. family of size $\kappa \in(\theta, \lambda)$. Then, there is a $\delta<\delta^{\prime}<\lambda$ and an iteration $\mathbb{P}^{\delta^{\prime}}$ of the same type along $L^{\delta^{\prime}}$ such that
(a) $\mathbb{P}^{\delta}\left|X=\mathbb{P}^{\delta^{\prime}}\right| X$ for all $X \subseteq L^{\delta}$,
(b) for any $\mathbb{P}^{\delta^{\prime}} \backslash L^{\delta^{\prime}}$-name \dot{F} for a filter base of size $<\theta$, there is an $x \in M^{\delta^{\prime}}$ such that $\Vdash_{\delta^{\prime}} \dot{F}=\dot{F}_{x}$ and
(c) $\mathbb{P}^{\delta^{\prime}} \upharpoonright L^{\delta^{\prime}}$ forces that \dot{A} is not mad.

Main result

Theorem (Fischer and M.)

There is an iteration \mathbb{P}^{λ} along L^{λ} that forces
$\mathfrak{s}=\theta<\mathfrak{b}=\mathfrak{d}=\mu<\mathfrak{a}=\mathfrak{c}=\lambda$.

Further results

Theorem (Fischer and M.)

If $\theta_{0}<\theta_{1}<\theta<\mu<\lambda$ are uncountable regular, $\theta^{<\theta}=\theta$ and $\lambda^{<\lambda}=\lambda$, then there is a ccc poset that forces $\operatorname{add}(\mathcal{N})=\theta_{0}<\operatorname{cov}(\mathcal{N})=\theta_{1}<\mathfrak{p}=$ $\mathfrak{g}=\mathfrak{s}=\theta<\operatorname{add}(\mathcal{M})=\operatorname{cof}(\mathcal{M})=\mu<\operatorname{non}(\mathcal{N})=\mathfrak{a}=\mathfrak{r}=\mathfrak{c}=\lambda$.

