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Some classical cardinal invariants of the continuum

For f , g ∈ ωω, f is dominated by g , denoted by f ≤∗ g , iff
f (n) ≤ g(n) for all but finitely many n ∈ ω.

The (un)bounding number b is the least size of a ≤∗-unbounded
family of ωω.

The dominating number d is the least size of a ≤∗-cofinal family.
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Some classical cardinal invariants of the continuum

For X ,A ∈ [ω]ω, X splits A iff X ∩ A and Ar X are infinite.

X A

The splitting number s is the least size of a splitting family, that is, a
subset F of [ω]ω such that any member of [ω]ω is splitted by some
member of F .

A ⊆ [ω]ω is an a.d. (almost disjoint) family if any two distinct
members of A have finite intersection.

the almost disjointness number a is the minimal size of an infinite
mad (maximal a.d.) family.
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Folklore

ℵ1 ≤ b ≤ d ≤ c.

ℵ1 ≤ s ≤ d.

b ≤ a ≤ c.
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E.g. finite support iteration of Hechler forcing D of length µ (uncountable
regular) forces s = ℵ1 < b = d = µ.
Additionally, if θ < µ is uncountable regular, if we alternate D with
Mathias-Prikry posets of size < θ (i.e., MF with F a filter base of size < θ)
by a book-keeping devise, the resulting iteration forces s = θ < b = µ.



Some cardinal cardinal invariants of the continuum

Folklore

ℵ1 ≤ b ≤ d ≤ c.

ℵ1 ≤ s ≤ d.

b ≤ a ≤ c.

b

b

b

b

b

bℵ1

b

s

a

d

c

E.g. finite support iteration of Hechler forcing D of length µ (uncountable
regular) forces s = ℵ1 < b = d = µ.

Additionally, if θ < µ is uncountable regular, if we alternate D with
Mathias-Prikry posets of size < θ (i.e., MF with F a filter base of size < θ)
by a book-keeping devise, the resulting iteration forces s = θ < b = µ.



Some cardinal cardinal invariants of the continuum

Folklore

ℵ1 ≤ b ≤ d ≤ c.

ℵ1 ≤ s ≤ d.

b ≤ a ≤ c.

b

b

b

b

b

bℵ1

b

s

a

d

c

E.g. finite support iteration of Hechler forcing D of length µ (uncountable
regular) forces s = ℵ1 < b = d = µ.
Additionally, if θ < µ is uncountable regular, if we alternate D with
Mathias-Prikry posets of size < θ (i.e., MF with F a filter base of size < θ)
by a book-keeping devise, the resulting iteration forces s = θ < b = µ.



Main Problem

We are interested in obtaining models where three or more cardinals of
this diagram are pairwise different.

Theorem (Shelah 2004)

If ℵ1 < µ < λ are uncountable regular cardinals, then it is consistent that
s = ℵ1 < b = d = µ < a = c = λ.

Problem

(1) Is b < a < s consistent?

(2) Is b < s < a consistent?

(3) Is ℵ1 < s < b < a consistent?
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Templates

For a linear order L and x ∈ L, let Lx := {z ∈ L / z < x}.

Definition (Indexed template)

An indexed template is a pair 〈L, Ī := 〈Ix〉x∈L〉 such that L is a linear
order, Ix ⊆ ℘(Lx) for all x ∈ L and

(1) ∅ ∈ Ix ,

(2) Ix is closed under finite unions and intersections,

(3) Ix ⊆ Iy if x < y and

(4) I(L) :=
⋃

x∈L Ix ∪ {L} is well-founded by the subset relation.

For x ∈ L, Îx denotes the ideal (on Lx) generated by Ix .
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Templates

The well foundedness allows to define a function Dp = DpĪ : ℘(L)→ ON
such that, for X ⊆ Y ⊆ L,

Dp(X ) ≤ Dp(Y ) and

Dp(X ) < Dp(Y ) whenever x ∈ Y and
X ∈ Ix�Y = {A ∩ Y / A ∈ Ix}. In addition, if X ( Y ∩ Lx , then
Dp(X ∪ {x}) < Dp(Y ).

For example:

Ix = [Lx ]<ω. Here, Îx = Ix and Dp(X ) = min{|X |, ω}.
L = δ ordinal, Iα = α + 1. Here, Îα = P(α) and Dp(X ) = o.t.(X ).
This is the template corresponding to a fsi of length δ.
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such that, for X ⊆ Y ⊆ L,

Dp(X ) ≤ Dp(Y ) and

Dp(X ) < Dp(Y ) whenever x ∈ Y and
X ∈ Ix�Y = {A ∩ Y / A ∈ Ix}. In addition, if X ( Y ∩ Lx , then
Dp(X ∪ {x}) < Dp(Y ).

For example:
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Iterations along a template

P↾B
L

Main idea: An iteration P (with finite support) along a template 〈L, Ī〉
satisfies:

P�B is defined for any B ⊆ L.

If A ⊆ B ⊆ L then P�Al P�B.
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satisfies:

P�B is defined for any B ⊆ L.

If A ⊆ B ⊆ L then P�Al P�B.

For x ∈ L, the generic object added at x is generic over VP�B for all
B ∈ Îx ,

that is, P�(B ∪ {x}) = P�B ∗ Q̇B
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Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an
indexed template 〈L, Ī〉, H,M disjoint sets, L = H ∪M and Cx ∈ Îx of
size < θ for x ∈ M.

For A ⊆ L, by recursion on Dp(A), define a poset P�A
as follows:

(i) If A has a maximum x and Ax = A ∩ Lx ∈ Îx then
P�A = P�Ax ∗ Q̇Ax

x where:

If x ∈ H then Q̇Ax
x = DVP�Ax

.
If x ∈ M and Cx ⊆ Ax , fix Ḟx is a P�Cx -name of a filter base of size
< θ (this only depends on Cx) and put Q̇Ax

x = MḞx
.

If x ∈ M but Cx * Ax , then Q̇Ax
x = 1.

(ii) If A has a maximum x but Ax /∈ Îx , then
P�A = limdir{P�B / B ⊆ A and B ∩ Lx ∈ Ix�A}.

(iii) If A does not have a maximum, then
P�A = limdir{P�B / ∃x∈A(B ∈ I�A)} (so P�∅ = 1).
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P�A = limdir{P�B / B ⊆ A and B ∩ Lx ∈ Ix�A}.

(iii) If A does not have a maximum, then
P�A = limdir{P�B / ∃x∈A(B ∈ I�A)} (so P�∅ = 1).



Iterations along a template

Iterations we are interested in: Fix θ an uncountable regular cardinal, an
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P�A = P�Ax ∗ Q̇Ax

x where:

If x ∈ H then Q̇Ax
x = DVP�Ax

.
If x ∈ M and Cx ⊆ Ax , fix Ḟx is a P�Cx -name of a filter base of size
< θ (this only depends on Cx) and put Q̇Ax

x = MḞx
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indexed template 〈L, Ī〉, H,M disjoint sets, L = H ∪M and Cx ∈ Îx of
size < θ for x ∈ M. For A ⊆ L, by recursion on Dp(A), define a poset P�A
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Iterations along a template

Lemma

For any A ⊆ L,

(a) P�A is ccc (moreover, Knaster) and

(b) if p ∈ P�A and ẋ is a P�A-name for a real, then there is C ⊆ A of size
< θ such that p ∈ P�C and ẋ is a P�C-name.
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A consistency result

Theorem (M.)

Let θ < κ < µ < λ be uncountable regular cardinals where κ is
measurable, θ<θ = θ and λκ = λ. Then, there exists a ccc poset forcing
s = θ < b = d = µ < a = c = λ.

Problem

Can a similar consistency result be proven with ZFC alone?
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Shelah’s template

Fix uncountable regular cardinals θ < µ < λ. For δ ≤ λ define

Lδ = (λµ)×
⋃
n<ω

(δ∗, δ)n

linearly ordered by x < y iff one of the following holds:

(i) there is some k < min{|x |, |y |} such that x�k = y�k and
x(k) < y(k);

(ii) x ⊆ y and y(|x |) is positive.

(iii) y ⊆ x and x(|y |) is negative.

The family Iδ if formed by finite unions of sets from

{Lδα / α ∈ λµ}∪{[x�(|x |− 1), x) / x ∈ Lδ is θ-relevant}∪{{z} / z ∈ Lδ}.

〈Lδ, Īδ〉 is an indexed template, where Iδx := {A ∈ Iδ / A ⊆ Lδx}.
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Isomorphism-of-name arguments

Shelah proved that, assuming CH and λℵ0 = λ (regular), an iteration of D
along Lλ (with θ = ℵ1) forces s = ℵ1 < b = d = µ < a = c = λ.

1 To force a ≥ λ, assume {ȧε / ε < κ} is a sequence of names with
ℵ1 < κ < λ that is forced to form an a.d. family. For each ε < κ,
there is a Bε ⊆ Lλ countable s.t. ȧε is a P�Bε-name.

2 By a ∆-system argument, wlog assume that {Bα / α < ω1} forms a
∆-system with root R, 〈Bα, Īλ�Bα〉 ∼= 〈B0, Īλ�B0〉 and
〈P�Bα, ȧα〉 ∼= 〈P�B0, ȧ0〉 for all α < ω1.

3 Construct Bκ ⊆ Lλ countable s.t. Bκ ∩ Bα = R for all α < ω1 and
〈P�B0, ȧ0〉 ' 〈P�Bκ, ȧκ〉.

4 For ε < κ there is a suitable α < ω1 such that Bε ∩ Bα ⊆ R and
〈P�(Bα ∪ Bε), ȧα, ȧε〉 ' 〈P�(Bκ ∪ Bε), ȧκ, ȧε〉, so ȧκ and ȧα are forced
to be pairwise disjoint.
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4 For ε < κ there is a suitable α < ω1 such that Bε ∩ Bα ⊆ R and
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3 Construct Bκ ⊆ Lλ countable s.t. Bκ ∩ Bα = R for all α < ω1 and
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2 By a ∆-system argument, wlog assume that {Bα / α < ω1} forms a
∆-system with root R, 〈Bα, Īλ�Bα〉 ∼= 〈B0, Īλ�B0〉 and
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4 For ε < κ there is a suitable α < ω1 such that Bε ∩ Bα ⊆ R and
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Isomorphism-of-name arguments

What happens for arbitrary θ?

Assuming θ<θ = θ and λ<θ = λ, by
changing ω1 by θ and “countable” by “size < θ”, we can repeat steps 1
and 2 of the previous argument, but the iteration may not be uniform
enough to find a Bκ like in step 3, as we want to include small
Mathias-Prikry posets to force θ ≤ s.

Look at a δ < λ: Assume such an iteration along Lδ and go through steps
1 and 2. Now:

3’ Find δ′ ∈ (δ, λ), choose a suitable Bκ ⊆ Lδ
′

such that Bκ ∩ Lδ = R (the
same intersected with all Bα with α < θ) and extend the iteration P�Lδ
to P�Lδ′ such that 〈P�B0, ȧ0〉 ' 〈P�Bκ, ȧκ〉.

4’ Same as step 4.
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Main Lemma

Assume θ<θ = θ and λ<λ = λ.

Main Lemma

Let θ+ < δ < λ, Pδ be an iteration of D and Mathias-Prikry forcings of
size < θ along Lδ and Ȧ a P�Lδ-name of an a.d. family of size κ ∈ (θ, λ).
Then, there is a δ < δ′ < λ and an iteration Pδ

′
of the same type along

Lδ
′

such that

(a) Pδ�X = Pδ
′�X for all X ⊆ Lδ,

(b) for any Pδ
′�Lδ′-name Ḟ for a filter base of size < θ, there is an

x ∈ Mδ′ such that δ′ Ḟ = Ḟx and

(c) Pδ
′�Lδ′ forces that Ȧ is not mad.
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Main result

Theorem (Fischer and M.)

There is an iteration Pλ along Lλ that forces
s = θ < b = d = µ < a = c = λ.



Further results

Theorem (Fischer and M.)

If θ0 < θ1 < θ < µ < λ are uncountable regular, θ<θ = θ and λ<λ = λ,
then there is a ccc poset that forces add(N ) = θ0 < cov(N ) = θ1 < p =
g = s = θ < add(M) = cof(M) = µ < non(N ) = a = r = c = λ.

b b b b b

b b

b b b b b

θ0

θ1 µ

λ
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b d
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